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Materials, Imperial College, London SW7 2BZ, UK 
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Abstract. An equation that includes both adatom diffusion and diatomic island formation 
is derived for describing growth on stepped surfaces. The equation is integrated numerically 
to obtain adatom and island concentration profiles along the terraces. Comparison of this 
solution with experimental measurements on vicinal GaAs(001) for a variety of Ga and 
As, fluxes and with Monte Carlo simulations shows that inclusion of island formation in 
the growth equation is crucial in determining the temperature beyond which growth becomes 
dominated by step propagation. 

The pioneering theory of Burton, Cabrera and Frank ( BCF) [ 11 for near-equilibrium 
crystal growth on stepped surfaces used linear diffusion equations to determine the 
step velocity and the distribution of adatoms on terraces. The advent of molecular-beam 
epitaxy (MBE), in which growth occurs under manifestly far-from-equilibrium condi- 
tions, has led to renewed interest in the BCF theory since, for appropriately chosen 
values of beam fluxes, substrate temperature, and terrace length, growth occurs by the 
advancement of steps across terraces [2-41. Extensions of the BCF theory to MBE have 
included the influence of the moving step boundary [5-71 (important in semiconductor 
growth, where step velocities are high), deviations from equilibrium at the step edges 
[8], and consideration of two-dimensional homogeneous nucleation theory [9, lo]. In 
none of these treatments, however, was lateral interactions of adatoms on the terraces 
included in the calculations, though it was recognized that corrections to BCF theory 
due to island-formation would be substantial for growth under typical conditions found 
for MBE [6, 9-11]. 

In this letter, we generalize the BCF theory by including a first-order approximation 
to lateral adatom interactions in the form of diatomic island formation. By using 
simulations of MBE [ 121 to quantify the effect of island-formation, the theory reproduces 
measured values of the transition temperature, T,, at which growth becomes dominated 
by step advancement for GaAs using different Ga and AsZ fluxes. This remarkable 
result shows that the inclusion of island-formation is essential for obtaining a realistic 
model of epitaxial growth on misoriented surfaces. 

The vicinal surface consists of an infinite train of flat steps separated by terrace 
length h in the x-direction (figure 1). The substrate is treated as a continuum on which 
there is a concentration n(x ,  t )  of surface adatoms. The continuity equation for n ( x ,  t )  
on a section of the vicinal surface is 

a n ( x ,  t )  a2n(x ,  t )  
a t  a x 2  + . I - R [ n ( x ,  t ) ]  -- - D  
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Figure 1. Schematic representation of a section through the stepped crystal and the 
concentration of adatoms, n ( x ) ,  and of diatomic islands, N ( x ) ,  along a terrace. 

where D is the diffusion constant of adatoms on the terraces, J is the adatom flux to 
the surface, and R( n )  is a concentration-dependent ‘reaction rate’ for island formation, 
which will be specified below. Desorption from the surface has been omitted due to 
the long adatom residence times found for typical MBE growth conditions. The diffusion 
constant is taken to be of the Arrhenius form D = va2 exp(-ED/kBT), where v is an 
adatom vibrational frequency, Q is the nearest-neighbour hopping distance, E ,  is the 
activation energy for surface diffusion for a lone adatom, kB is Boltzmann’s constant, 
and T is the substrate temperature. For a steady state in which the steps move at a 
constant velocity v, we transform to a frame of reference which moves with the step 
train, in which case the continuity equation (1) becomes 

d2n dn 
dx2 dx 

D-+ U-+ J -  R(n)  = 0. 

In the BCF theory, the concentration of adatoms at the step edge is determined by 
the local equilibrium condition. However, the assumption of thermal equilibrium is 
not likely to be valid under the growth conditions of MBE. Therefore, we impose 
absorbing boundary conditions at the step edges: n(x = 0) = n(x = h )  = 0. 

We include island formation on the terraces to a first-order approximation by 
allowing the formation only of diatomic islands. In regimes where growth is not 
dominated by the formation and coalescence of clusters, this is not too restrictive an 
assumption. For example, the inclusion of triatomic islands changes T, by only a few 
per cent. Denoting the island concentration by N(x, t ) ,  the rate of formation of diatomic 
islands on the terrace is thus given by 

d N  n 
R ( n )  = 2 - = 2aDn2 + 2 Jm -. 

dt  n0 
(3)  

The first term on the right-hand side of ( 3 )  represents the rate at which single mobile 
adatoms collide to form islands and is proportional to D and to U, a capture efficiency 
of order one [ 131. The second term accounts for the direct collision of incoming atoms 
with adsorbed adatoms and is proportional to the total fraction of incoming adatoms 
that arrive at island-forming sites, n/no, where no is the concentration of lattice sites. 
The factor m is the number of sites around a single adsorbed adatom that form a 
diatomic island when filled. For example, for a (001) surface, m = 4, since a single 
adatom has four nearest neighbours; if the site of the adatom itself is included, then 
m = 5 .  
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In order to solve (2), we require an additional relation to give the unknown velocity 
U. Mass conservation at the step edge yields the following expression for the velocity 

The first and second terms on the right-hand side of (4) are the fluxes of single adatoms 
into the step from below and above, and the last two terms are the fluxes due to islands. 
We recognize the right-hand side of (4) as the integral o f  (2), apart from the flux term, 
along a terrace from x = 0 to x = h, with R (  n) given by (3), from which we deduce 
that ono = Jh. 

Combining (2) and (3) with the determined value of o and introducing the 
dimensionless concentration y Dn/(Jh*)  and distance x +  x/h yields *+ a -+ dY 1 - 2apy2- 2amy = 0 y ( 0 )  = y (  1) = 0. dx2 dx  

The dimensionless parameter a = Jh2/ Dn, represents the ratio of the diffusion time 
for an adatom to reach a terrace ( h 2 / D )  to the interarrival time of atoms per site 
(no/ J ) ,  and the dimensionless parameter p = anoh* is a measure of the misorientation 
angle (through the terrace length with monatomic steps) and of the lateral interaction 
(through the capture efficiency). The variables in ( 5 )  are scaled so that the diffusion 
term and flux term are both order one independent of the value of a. We can thus 
identify three growth regimes: (i)  a > 1, island-formation dominates; (ii) 1 > a > 1/p, 
island-formation competes with step-advancement; and (iii) a < 1/p, step-advancement 
dominates. 

Numerical solution of ( 5 )  is now straightforward using, for example, a fourth-order 
Runge-Kutta method with Kutta’s coefficients [14]. Figure 2 shows the effect of 
increasing a and thus the temperature (through the diffusion constant D): ( a )  with 
no island-formation [ R ( n )  = 0 in (2)] and ( b )  with island-formation (CT = 1, m = 5 ) ,  
for a fixed terrace length h = 15a. The lowering and flattening of the profile is more 
marked at lower temperatures (higher a) due to island formation. 

No Nucleation With Nucleation 
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Figure 2. Adatom concentration profiles along a terrace with length h = 150 for various 
a. The left panel shows profiles with no island-formation included (a == 0 and m = 0 in 
( 5 ) ) .  Note the flattening and lowering of the profile in the right panel, which includes 
island formation (a = 1 and m = 5 in ( 5 ) ) .  
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Once the adatom concentration is known, the island concentration profile along a 
terrace may be determined from (3). Islands are stable and immobile once formed; 
thus the islands do not move with the step. With reference to figure 1, we focus on the 
position x = h in a stationary coordinate system and observe the formation of islands 
with time. Since at x = h the step is freshly formed there can be no islands on top of 
it; thus N(h ,  t = 0) = 0. As the step moves with velocity U the concentration of islands 
includes all islands which were formed during the time t = ( h  - x)/  v the step moves 
a distance h - x. Thus, in the moving coordinate system we replace t by ( h  - x)/ v in 
(4) and obtain in terms of the dimensionless quantities defined in ( 5 )  the dimensionless 
island concentration Y ( x )  = 2N(x)/(arno) 

Y ( x )  =2/3 y2(x) dx+2m jx' y ( x )  dx. I: ( 6 )  

When t = h /  U (x = 0 in the moving reference frame), the next step has reached our 
fixed reference point, and all islands are instantaneously captured by the advancing 
step. The island concentration is greatest directly below the step edge at x = 0, as shown 
schematically in figure 1. 

The growth mode in MBE is strongly temperature dependent. At low temperatures, 
the surface diffusivity is small so growth due to island formation competes with adatom 
diffusion to the step edges. With increasing temperature, the enhanced mobility of 
adatoms promotes direct incorporation at the step edges and island-formation 
diminishes, which leads to growth by step advancement. The transition to the step-flow 
growth mode is gradual; however, we expect that step advancement is dominant at a 
temperature T, when the island-formation rate becomes negligible compared to the 
diffusion rate of single adatoms to the steps, which corresponds to regime (iii) above. 
Evaluation of the magnitude of the terms in ( 5 )  shows that a,< 1/p << 1 to give a 
negligible island-formation rate R ( y ) .  The temperature T, is then evaluated from a, as 

T,="[ ln(S)]  - 1  , 

k B  
(7) 

Treating surface diffusion using the Einstein relation x2 = 207,  with x = h, D given 
as above, and 7 = no/J, the average time interval between deposition at a specific site, 
yields for T, the expression 

- 1  

T,="[ln($)] k B  . 

By neglecting island formation, (8) predicts that growth by step advancement is achieved 
when the time for single adatoms across a terrace is of the same order of magnitude 
as the adatom interarrival time at a specific site, a = ( h 2 / D ) ( n o / J )  = 2. However, the 
island-formation rate R ( y )  actually dominates the growth equation ( 5 )  for a = 2 (figure 
2). Thus, the central assumption of the Einstein relation, that the effect of adatom 
interactions can be neglected in calculating T,, is inconsistent; it is necessary to utilize 
(9, which incorporates the full nonlinear physics. 

We compare the results of our model to Monte Carlo simulations of [12, 15, 161. 
T, is identified in the simulations as the temperature beyond which oscillations of the 
step density disappear. We have shown above that a, < 1/p << 1; however, utilization 
of ( 5 )  requires that we pinpoint a value of (Y, at which we can consider step advancement 
to be the dominant mode of growth. In this regime, the island-formation rate is very 
small and the dimensionless island concentration (6) immediately below a step edge, 
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2 N ( x ) / n 0 =  aY(0)  (which is the maximum island concentration on the terrace), takes 
a small value Yo. The temperature T, is then found by determining the value of 
a = JhZ/Dno for which aY(0)  = Yo as follows: ( a )  solve ( 5 )  for a given a and with 
fixed p = anoh', and ( b )  determine Y(0) from (6 ) .  This process is repeated until a, is 
found which yields aY(0)  = Yo. We find that Yo=O.O1 (with corresponding a,= 
1 / ( 2 p ) )  gives excellent agreement with the simulations over an order of magnitude 
variation in the flux J and for misorientation angles of 2"-4", as shown in table 1 [ 161. 
This  is remarkable given the sharp dependence of the transition temperature on the 
value chosen for Yo (figure 3). Thus step flow is considered to dominate when the 
atomic flux into the step edge due to upswept islands is below approximately one 
percent, a physically reasonable criterion. Our nonlinear theory also shows that the 
diffusivity in the Einstein relation x2 = 2 0 7  should be replaced by an effective diffusivity 
DeR= D a J 2  to account for the adatom interactions, where a,  is several orders of 
magnitude less than one for typical MBE conditions. 

- p =  100 

- 

- 
l , l , l , l , ~ , ~  

Table 1. Comparison of transition temperatures at which step flow occurs, calculated using 
Monte Carlo simulations [16], nonlinear theory including adatom interactions (7), and the 
Einstein relation (8). Parameters used are for a GaAs(100) surface with a = 3.98 x lo-* cm-', 
no = l/a*, E,  = 1.3 eV, U = 1, m = 5, and Y = (2k,T)/ h, where here h is Planck's constant. 

~ ~ 

T, ( K )  
J (cm-'s-') h l a  Simulation Theory Einstein relation 

5.0 x 101~ 10 650 654 520 
1 . o ~  lot4 10 680 673 533 

L O X  ioi4 14 700 707 545 
L O X  1014 20 750 750 559 

5 . o ~  1014 10 725 722 563 
1.ox 10'5 10 735 746 571 

5 . o ~  1014 20 815 811 S92 
2.3 x 1014 18 775 166 57 1 
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Figure 4. Measurements of T, for MBE on GaAs(001) for the indicated Ga and As, fluxes 
(from [3]). Least-squares fits of (7)  to the data are shown with E,  as an adjustable parameter 
and for a, also adjustable (‘best fit’), a, given by the nonlinear theory using Yo=O.O1, 
and for the Einstein relation. For the ‘best fit,’ nonlinear, and Einstein theories, the values 
of a, are 1.4 x 1.7 x and 2, respectively and the values for E ,  are 1.3 eV, 1.4 eV, 
and 2.0 eV, respectively. 

We show in figure 4 values of T, measured during MBE for GaAs(001) [3] for 
various Ga and As, fluxes compared with a least-squares fit of (7), with both ED and 
a, as adjustable parameters, a least-squares fit of (7) with a,  = 2 (the Einstein relation), 
and with a,  calculated at Y(0)  = 0.01 from our nonlinear theory, in accordance with 
the results shown in table 1. The correspondence between a ,  calculated from our 
nonlinear theory to the ‘best fit’ of the data confirms that due to island-formation, step 
flow-dominated growth is only reached when the diffusion time is several orders of 
magnitude less than time for the step to move a terrace length. By contrast, attempting 
to fit the Einstein relation to the measurements requires ED = 2.0 eV, an extremely high 
value; if a lower, more realistic energy were used (e.g. 1.3-1.4 eV as predicted by the 
‘best fit’ and the nonlinear theory), the Einstein relation would predict T, several 
hundred degrees below the measurements (cf table l ) ,  thus highlighting the essential 
contribution of the nonlinear adatom interaction term in accurate predictions of 
epitaxial growth regimes. 

We would like to thank Dr S Clarke for his assistance with the simulations, and 
Professor B A Joyce for several helpful discussions. AKM-B also acknowledges the 
support of a NATO Postdoctoral Fellowship. 
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